
ABSTRACT

Under Army SBIR Phase I funding, we have developed a
nonparametric buried mine classifier using MWIR
images. We start with our new image segmentation
method based on the wavelet transform. Instead of
thresholding the original MWIR images, we first apply
the wavelet transform to MWIR image and estimate a
threshold value in the corresponding wavelet domain. The
small wavelet coefficients are associated with the noise
and background clutters appeared in the original image.
We then map this threshold in the wavelet domain back to
MWIR image domain by applying the inverse wavelet
transform. This new threshold is subsequently used to
segment the MWIR images and extract small image chips
(patches) containing potential buried mines for further
detection and classification. In order to perform the
statistical classification, we have applied Kolmogorov-
Smirnov (KS) test, a powerful nonparametric statistical
hypothesis test procedure. One major advantage of using
KS test for buried mine detection is that we don’t need to
make any assumptions of the underlying statistical
distributions associated with the cluster intensity variation
profiles.

Keywords: buried mine detection; Kolmogorov-Smirnov
test; cluster intensity variation; statistical hypothesis test

1.    INTRODUCTION

Traditional landmine detection techniques are both
dangerous and time consuming. Landmines can be square,
round, cylindrical, or bar shaped. The casing can be
metal, plastic, or wood. These characteristics make
landmine detection difficult. The fundamental challenges
of buried mine detection arises from the fact that the mean
spectral signatures of the disturbed soil areas that indicate
mine presence are nearly always very similar to the
signatures of mixed background pixels that naturally
occur in heterogeneous scenes composed of various types
of soil and vegetation. They tend to closely mimic
spectral mixtures of the dominant soil and vegetation
constituents that exist in the background.

Thermal techniques can be used to detect buried mines
that have been buried in the ground for a long time. Most

buried mines, to be effective, have to be buried close to
the surface. They often have different thermal properties,
such as conductivity and mass, from the soil, and thus
detection of the buried mine itself does not rely on the
properties of the surface soils. Almost all soils have
spectral structures due to the spectral properties of
minerals which compose them. Studies have shown that
particle size has a very strong effect on spectral properties
of the minerals which compose the surface dirt. Thus,
even for soil where there is no mineral compositional
distinction between the top layer and the subsoil, the
differential sorting of sizes will result in different spectral
signature.

Behboodian et al. [4] presented a system that uses elastic
surface waves and electromagnetic waves for the
detection of buried landmines. It mainly uses the acoustic
waves to detect the buried landmines. The depth
information can be inferred from the Fourier transformed
data based on the property that the penetration depth is
proportional to the temporal frequency. Mine detection
using infrared techniques is primarily based on exploiting
temperature differences between pixels on the mines and
background pixels [5]. The use of spatial information
(e.g., size, shape, and pattern) can provide additional
discrimination power, particularly if the mines are
resolved into multiple pixels by a high-resolution imaging
sensor.

In infrared-based landmine detection applications, the
thermal signature is often embedded in noise caused by
fluctuations in the soil structure and the surface. To
design a detector, Svensson and Lundberg [12] modeled
the characteristics of the noise. Difficulties arise when
designing a detector as the infrared signatures of buried
landmines vary significantly depending on external
parameters such as weather, soil moisture, solar radiation,
burial depth, and time of burial. To solve these problems,
Svensson and Lundberg [13] modeled both the shape and
amplitude of the mine signature as outcomes of the
stochastic variables respectively, with known prior
distributions. The Bayesian Likelihood Ratio Test is used
in the classification design. Lundberg [10] proposed to
model the set of possible infrared signatures as a scaling
with the parameter of the convolution between the top-
view shape of the buried object and a smoothing kernel
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depending on a smoothing parameter. The background
noise is modeled by means of a quarter-plane causal auto
regressive (AR) process. Likelihood ratio test was used in
the detection of mines.

Beaven et al. [3] used an abnormal detector to remove the
background clutter. Then, they apply spatial cluster and
size filtering to the raw filtered output to produce the
object detection in both of the filtered image data sets.
Joint Multisensor Exploitation is used for fusing
registered multiple detector outputs, which makes the
decision based on the joint distribution formed by the
multiple detector outputs. Filippidis et al. [9] reported an
automatic detection using knowledge-based techniques.
The fuzzy rule-based fusion is used to combine
complementary information derived from sensors to
produce an output image showing the likelihood of mine
locations. The inputs to the fusion process are the output
classification results from ART2 and the MLP
(MultiLayer Perceptron), together with the output of the
processed IR polarization image. A GA (Generic
Algorithm) tool is used to find the optimum structure and
inputs of the MLP neural networks.

An important consequence of the marginal spectral
separation between buried mine targets and mixed
backgrounds is that the conventional projection-based
methods of spectral detection, such as matched filtering,
statistical anomaly detection, and linear unmixing, cannot
provide reliable detection performance [5]. This is
because the mine pixels are so spectrally similar to linear
mixtures of the prominent background constitutes that any
potential mine discriminants must largely function in the
spectral subspace defined by the background itself. An
algorithm for automatically recognizing mine pixels must
therefore be based not on global linear projections that
suppress the background, but on a local analysis of pixel
fluctuations in the background-dominated spectral
coordinates. A buried mine detector should search the
scene for small patches of contiguous pixels that exhibit
relatively low spectral fluctuation and have a mean
spectral color which is sufficiently different from the
dominant background constituents.

A passive multispectral scanner can be used to detect
spectral intensity differences between mines and man-
made and natural clutter. The reason for using
multispectral analysis is that it has the potential to
discriminate between landmines and all other surface
clutter. Filippidis et al. [9] trained a neural network
classifier to discriminate against clutter and automatically
detect landmines. In the study conducted by Batman and
Goutsias [3], an unsupervised iterative scheme was used
for landmine detection in heavily cluttered scenes. This
scheme is based on iterating hybrid multispectral filters
that consist of a decorrelating linear transform coupled
with a nonlinear morphological detector. It effectively

addresses several weaknesses associated with previous
adaptations of morphological approaches to landmine
detection.

Under Army SBIR Phase I funding, we have developed a
nonparametric buried mine classifier using MWIR
images. We start with our image segmentation method
based on the wavelet transform. Instead of thresholding
the original MWIR images, we first apply the wavelet
transform to the MWIR image and estimate a threshold
value in the corresponding wavelet domain. The small
wavelet coefficients are associated with the noise and
background clutters appeared in the original image. We
then map this threshold in the wavelet domain back to
MWIR image domain by applying the inverse wavelet
transform. This new threshold is subsequently used to
segment the MWIR images and extract small image chips
(patches) containing potential buried mines for further
detection and classification.

In order to perform the statistical classification, we have
applied Kolmogorov-Smirnov (KS) test, a powerful
nonparametric statistical hypothesis test procedure. KS-
test essentially determines whether or not two data sets
are drawn from the same statistical distribution. The null
hypothesis is that they have the same distribution. Based
on our classifier, a buried mine is detected if the null
hypothesis is rejected. Otherwise, the image chip does not
contain any buried mines, only background clutters. One
major advantage of using KS-test for buried mine
detection is that we don’t need to make any assumptions
of the underlying statistical distributions associated with
the cluster intensity variation profiles.

Since the chip size is often too large (e.g., 50×50 pixels)
to process in near real time, we apply a 3D unsupervised
clustering method, Adaptive Self-Organizing Maps
(ASOM), to extract the representative pixels from this
target chip. Compared to the traditional clustering
methods, our ASOM does not need any prior knowledge
of the cluster numbers. By self-learning, it finds the
optimal number of clusters from the pixels of the image
chip. Being able to estimate the number of clusters in an
unknown image chip is significant since it is often
impossible to have the knowledge of image chip content a
priori. Unsupervised clustering method such as our 3D
ASOM is essential in dealing with real world data
processing, including the buried mines detection.

For the representative pixels (i.e., cluster centers)
extracted by our 3D ASOM, we scan this clustered chip
row-by-row (horizontal scanning) to construct a cluster
intensity variation profile. This is accomplished by
comparing the pixel intensity values at adjacent cluster
centers. Since each cluster center represents all pixels in
its cluster, this cluster variation profile essentially
captures the significant thermal variation in each image



chip. In our Phase I study, we have found that the cluster
intensity variation profiles associated with buried mines
are quite different from those constructed from the
background clutters. Therefore, we have used this cluster
variation profile as our buried mine signature.

Since the thermal variations are dependent on the time of
day, different buried mine profiles must be constructed.
To detect the buried mines, we have constructed a library
of buried mine signatures using the cluster variation
profiles for daytime and night time. To detect the buried
mines from a given MWIR image, we construct the actual
cluster variation profile from this image. Our buried mine
classifier is developed to statistically compare this actual
profile with all signature profiles in the library. If there is
a significant deviation between this actual profile and
signatures, the image chip is declared to contain a buried
mine, thus, detecting the buried mine. The key to this
technology is to determine how to statistically compare
the profiles which alawys vary in length.

This paper is organized as follows: The wavelet-based
MWIR image thresholding method is given in Section 2.
Our cluster trending based buried mine classifier is given
in Section 3. The test results using both daytime and night
time MWIR images are given in Section 4.

2. WAVELET-BASED MWIR IMAGE
THRESHOLDING

Suppose Y = [Y1, Y2, …, YMN]T is a vector of pixel values
of an image of size M×N. The problem of image
thresholding is to find a threshold λimage such that
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where T is the smallest pixel value in a given image. The
resulting image, T
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compressed (i.e., most clutters are removed) if λimage is
properly estimated and larger than most of clutter pixel
values. The key is how to estimate this thresholding level,
λimage.

Let X be an M×N image. Basic wavelet thresholding is
performed by taking the wavelet transform of the image
X, and then estimating the appropriate threshold based on
the image content. The thresholding value in the wavelet
domain can be expressed in terms of the product of σw

and λw:

λwavelet = σw × λw                     (2-2)

where both σw and λw can be estimated based on the
image content.

To estimate λimage, we use the Inverse Discrete Wavelet
Transform (IDWT) to map λwavelet estimated in the
wavelet domain to the image domain. A 2D discrete
wavelet transform performs three decompositions along
horizontal (H), vertical (V) and diagonal (Λ) directions
with different threshold levels denoted as th, tv, and td,
respectively. Denote ,

htDH
vtDV , and 

dtDΛ as the
denoising operators at corresponding threshold levels. We
have used the following inverse transform:

( )))(()),(()),((ˆ 1 XWDXWDVXWDHWX
dvh ttt Λ= −

                              (2-3)
and imageλ̂  is extracted from the resulted image.

Figure 1 shows an example where the original MWIR
image is given in the left figure and the thresholded image
is given in the right. The MWIR image contains both
surface and buried mines together with fiducials (ground
markers) and background clutters. It can be observed that
our wavelet-based image thresholding method has
successfully retained both surface and buried mines.

(a) Original MWIR image.

(b) Thresholded image.

Figure 1: An example of our wavelet-based
image thresholding method.

To locate the buried mines in the thresholded image, we
apply our ASOM (Adaptive Self-Organizing Maps) which
is essentially a new data clustering method. However,
compared with other existing clustering algorithms, our
method does not require any a prior knowledge of the
number of clusters in the data. It does the clustering by
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self-learning and self-teaching. Our 3D ASOM has been
applied to the thresholded image to locate potential mines.
The center of each cluster indicates the location of a
potential mine. Figure 2 shows an example of ASOM
applied to the thresholded image. The clusters (small
circles) and their centers have been plotted on the original
MWIR image.

(a) Thresholded image.

(b) Original MWIR with clusters.

Figure 2: Clusters obtained from the thresholded image.

As we can see from Figure 2, the ASOM clustering
method gives many possible mine locations. We window
out each putative mine location based on a standard
deviation of pixels around the mine location. Figure 3
shows our windowing approach. In this figure, we start
with a very small window, and increase the size of the
window until the standard deviation of the pixels within
each window starts increasing. The change in standard
deviation is measured using the standard deviation of the
current window and the past windows.

Figure 3: Windowing a potential mine.

In the figure we start with Window 1 and measure its
standard deviation. Since most pixels in Window 1 are

close in value, the standard deviation is small. Window 2
has a higher standard deviation than Window 1. Similarly
Window 3 has a higher standard deviation than Window
2. Window 4 has the highest deviation of the four
windows. The window size is increased until the rate of
change in the standard deviation of at least 4 or 5
windows is close to a constant value. The window at
which the change starts to become approximately constant
is used to window the possible mine. Figure 4 shows the
original image with all the putative mine location
windowed.

Figure 4: Output after applying the windowing technique.

3.    CLUSTER INTENSITY VARIATION BASED
BURIED MINE CLASSIFIER

To accurately classify buried mines using MWIR images,
let’s take a close look at their chips. Figure 5 shows four
buried mine chips from night time MWIR images together
with their histograms. It is clear that the pixel intensities
of buried mine chips don’t exhibit any particular common
statistical distributions, which also implies that the
traditional feature vector based classification schemes are
less effective. This is largely due to the fact that it is
difficult to construct the feature space with enough
discrimination power.

Figure 5: Buried mines in night time images and histograms.
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Figure 6 shows four buried mine chips extracted from the
daytime MWIR images. Compared with the night time
chips shown in Figure 5, the daytime chips are lighter in
intensity and pixel intensity changes are relatively small
as well. Once again, it is clear that the buried mine chips
from daytime images do not show any distinctive
common features. Therefore, a new feature extraction
approach is desired for both daytime and night time
buried mine chips.

Figure 6: Buried mines from daytime MWIR images.

Our approach for the buried mine detection is to extract
features based on the pixel intensity variations. Since the
chip size is often too large (e.g., 50×50 pixels) to process
in near real time, we apply our 3D unsupervised
clustering method, Adaptive Self-Organizing Maps
(ASOM), to extract the representative pixels from this
patch. Compared to the traditional clustering methods, our
ASOM does not need any prior knowledge of the cluster
numbers. By self-learning, it finds the optimal number of
clusters from the pixels of the image chip. Being able to
estimate the number of clusters in an unknown image chip
is significant since it is often impossible to have the
knowledge of image chip content a priori. Unsupervised
clustering method such as our 3D ASOM is essential in
dealing with real world data processing, including the
buried mines detection.

Our similarity-based 3D Adaptive Self-Organizing Map
(ASOM) is used to find clusters in the windowed chips.
For each pixel in the target chip, its location ),( yx and
intensity value )( z form a vector ),,( zyxX and is used
for clustering. Instead of using the Euclidean distance
between two vectors as a measure of dissimilarity, the
Tanimoto distance is used to measure similarity between
two vectors. It is defined as:

YXYX
YXYXS

T

T

−+
= 22),(

          (3-1)

The clustering algorithm is similar to our ASOM
clustering algorithm except that the above similarity
instead of Euclidean distance is used as the measurement.
It starts with one cluster, which is the first vector. The
similarity between a new vector X and existing cluster
nodes ),,1( miYi K= are first calculated according to
equation (3-1). If the maximum value of ),( iYXS is less
than a predefined threshold value, which indicates the
new vector is different from all the clusters, a new cluster
is added. Otherwise, the winning node (the node with the

largest similarity value) and its neighborhood nodes are
updated.

After clustering, the intensity values of the cluster centers
are lined up to form a vector C. The N-step (N = 6 in our
system) difference of each vector is calculated as:

)()()( kCNkCkDC −+=                             (3-2)

The difference vector DC is used as a feature vector.

Once the clusters are estimated, we scan their pixel
intensity values at the cluster centers row by row to form
a feature vector. This concept is illustrated in Figure 7.
The pixel intensity variations scanned from each row are
concatenated to form one vector, called cluster variation
feature (CVF) vector. There are some other scanning
schemes including the vertical scanning and diagonal
scanning. Different CVF vectors can be formed from
different scanning schemes. In this paper, we mainly
focus on the horizontal scanning.

Figure 7: Buried mine image chip and clustering result.

Since the number of clusters in different chips is often
different, the length of our buried mine cluster variation
based feature vectors varies. Figure 8 shows four such
feature vectors. These variable length features pose a
formidable challenge to the traditional classifier design in
which the feature vectors are required to have the same
length. Therefore, a different classifier must be developed
in order to use the CVF vectors to classify buried mines.

To visually compare CVF features, Figure 9 shows four
CVF features associated with four clutter chips. An
interesting observation is that the clutter CVFs are much
shorter, which results from less number of clusters in the
background clutter chips. By visually comparing the



CVFs of buried mines (Figure 8) and clutters (Figure 9),
we can easily identify the differences, which implies that
they can be used for the buried mines detection.

Figure 8: Feature vectors of four buried mines.

Figure 9: Feature vectors of  four background clutters.

In order to perform classification using our variable
length CVFs, Kolmogorov-Smirnov (KS) test has been
used to compare the feature vectors extracted from each
windowed target chip and each of the reference vectors in
the signature library. The null hypothesis is that they have
the same distribution. The test result for each target chip
is 0, which means the hypothesis can be accepted. The
test result for the background is 1, that is, the hypothesis
must be rejected.

The Kolmogorov-Smirnov test (KS-test) tries to
determine if two CVFs (with variable lengths) differ
significantly. The KS-test has the advantage of making no
assumption about the distribution of data, which means
that it is nonparametric and distribution free. Let x1, x2,
…, xn denote an independent and identically distributed
sample drawn from a population with unknown
parameters θ1, θ2, …, θn. The KS-test statistic Dn is
defined as

|)()(ˆ|sup xFxFD n
x

n −=              (3-3)

where n is the sample size, )(ˆ xF is a fitted cdf, and Fn(x)
is the empirical cdf, a step function that increases by 1/n
at each data value.

We can define the following detection ratio as:

referencesofNumberTotal
resultTestKSofzerosofNumberT =             (3-4)

We can use the following majority-voting based detection
rule: If 3/2≥T , the target chip is classified as a buried
mine, otherwise it is classified as background clutter.

Figure 10 shows the overall architecture of our buried
mine detector. In this system, there are a number of buried
mine signatures constructed off-line using the ground
truth of MWIR images. We have found that different
signatures are required in order to accurately detect the
buried mines in daytime and night time.

Figure 10: System architecture of buried mine classifier.

1. TESTING RESULTS USING REAL IMAGES

In order to demonstrate the buried mine detection process
and verify the detection algorithms, we tested both
daytime and night time images.  This section shows the
processsing and detection results. The results are
compared with ground truth.

4.1    Daytime Test Results

A daytime image and its ground truth are shown in Figure
11.

Figure 11:  A daytime image and its ground truth.



Figure 12 shows the thresholded image, clusters based on
wavelet thresholding and ASOM clustering method.

Figure 12: Thresholded image and ASOM clustering
result based on the image given in Figure 11.

Figue 12 shows the library of 30 daytime buried mine
chips. A corresponding 30 CVFs are constructed off-line
and stored in the library for KS-test based buried mine
detection.

Figure 12:. A set of 30 daytime buried mine chips.

We then used our buried mine detection method to detect
buried mines and the result is shown in Figure 13. The
result indicates that 3 buried mines (type 13) are found, 1
missing and there is 1 false alarm. The missed buried
mine is actually very hard to detect, even through visual
inspection. If we carefully examine the image shown in
Figure 11, it is clear that there are a number of bushes
which appear to be buried mines. However, our
algorithms have successfully discriminate them from the
true buried mines. These results represent the
effectiveness of our buried mine detector.

Figure 13: Daytime buried mine detection result.

4.2    Night Time Test Result

Figure 14 shows the night time image with  the ground
truth.

Figure 14: A night time image and ground truth.

Figure 15 shows the thresholded image and clusters based
on wavelet transform and ASOM clustering method.

Figure 15: Thresholded image and ASOM clustering
result based on the image given in Figure 14.



Figue 16 shows the library of 15 night time buried mine
chips. A corresponding 15 CVFs are constructed off-line
and stored in the library for KS-test based buried mine
detection. Comparing to the daytime buried chips, these
night time chips are darker and pixel intensity variations
are more profound.

Figure 16:. The set of 15 night time buried mine chips.

The buried mine detection result is shown in Figure 17.
The result indicates that 3 buried mines (type 13) are
found, 1 mine is missing and there are 3 false alarms. The
missing buried mine is extremely difficult even through
the visual inspection.

Figure 17: Night time buried mine detection result.

In addition to the test of MWIR images with known
ground truth, we have also performed a blind test with
various data sets in different environments, and the
algorithms have performed well.  These algorithms will
be tested with multi-spectral data sets.

5.    CONCLUSION

In this paper, we have described a nonparametric buried
mine classifier using MWIR images. We start with our
new image segmentation method based on the wavelet
transform. In order to perform the statistical classification,
we have applied Kolmogorov-Smirnov (KS) test. One
major advantage of using KS test for buried mine
detection is that we don’t need to make any assumptions
of the underlying statistical distributions associated with
our cluster intensity variation profiles. We have
conducted the extensive tests of our buried mine classifier
using actual MWIR images taken during daytime and

night time, and various background settings. The test
results have shown that our nonparametric buried mine
detection mechanism has a very good detection rate and
low false alarm rate.
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